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Abstract: In this paper, we will see that the Cartesian product of two 2-Banach
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tor in linear 2-normed space. We also describe the concept of different types of
continuity of b-linear functional and derive the Uniform Boundedness Principle
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1. Introduction
The Uniform boundedness principle is one of the most useful results in func-

tional analysis which was obtained by S. Banach and H. Steinhaus in 1927 and it is
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also familiar as Banach-Steinhaus Theorem. The Uniform boundedness principle
tells us that if a sequence of bounded linear operators Tn ∈ B(X, Y ), where X is
a Banach space and Y a normed space, is pointwise bounded, then the sequence
{Tn} is uniformly bounded.
The Hahn-Banach theorem is another useful and important theorem in functional
analysis and it is frequently applied in other branches of mathematics viz., algebra,
geometry, optimization, partial differential equation and so on. In fact, in this
theorem a bounded linear functional defined on a subspace can be extended into
the entire space.
The idea of linear 2-normed space was first introduced by S. Gahler ([3]) and there-
after the geometric structure of linear 2-normed spaces was developed by the great
mathematicians like A. White, Y. J. Cho, R. W. Freese, S. C. Gupta and others
[4, 5, 6]. In recent times, some important results in classical normed spaces have
been proved into 2-norm setting by many researchers.
In this paper, we will see that in the Cartesian product X × Y , we can induce a
2-norm using the 2-norms of X and Y and then we describe the concept of different
types of continuity of b-linear functional in the case of linear 2-normed spaces and
establish some results related to such types of continuity. In this paper, we are
going to construct the uniform boundedness principle and Hahn-Banach extension
theorem for a bounded b-linear functional defined on a 2-Banach space. Moreover
we introduce a notion of weak * convergence of the sequence of bounded b-linear
functionals in linear 2-normed spaces.

2. Preliminaries

Definition 2.1. ([3]) Let X be a linear space of dimension greater than 1 over
the field K, where K is the real or complex numbers field and ‖·, ·‖ be a K-valued
function defined on X ×X satisfying the following conditions:

(N1) ‖x , y ‖ = 0 if and only if x , y are linearly dependent,

(N2) ‖x , y ‖ = ‖ y , x ‖ ,

(N3) ‖αx , y ‖ = |α | ‖x , y ‖ ∀ α ∈ K ,

(N4) ‖x , y + z ‖ ≤ ‖ x , y ‖ + ‖x , z ‖ .

Then ‖·, ·‖ is called a 2-norm on X and the pair (X, ‖·, ·‖) is called a linear 2-
normed space. The non-negativity condition of 2-norm can be obtained by using
(N3)&(N4).
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Definition 2.2. ([6]) Let X be a linear 2-normed space. A sequence {xn} in X is
said to be convergent to some x ∈ X if

lim
n→∞

‖xn − x , y ‖ = 0

for every y ∈ X and it is called Cauchy sequence if

lim
n ,m→∞

‖xn − xm , z ‖ = 0

for every z ∈ X . X is said to be complete if every Cauchy sequence in this
space is convergent in X . A linear 2-normed space is called 2-Banach space if it is
complete .

Definition 2.3. ([9]) Define the following open and closed ball in linear 2-normed
space X:

B e ( a , δ ) = { x ∈ X : ‖x − a , e ‖ < δ }

B e [ a , δ ] = { x ∈ X : ‖x − a , e ‖ ≤ δ } ,

where a , e ∈ X and δ be a positive number .

Definition 2.4. ([9]) A subset G of a linear 2-normed space X is said to be open
in X if for all a ∈ G, there exists e ∈ X and δ > 0 such that B e ( a , δ ) ⊆
G .

Definition 2.5. ([10]) Let X be a linear 2-normed space and A ⊆ X . Then a
point a ∈ A is said to an interior point of A if there exists e ∈ X and δ > 0
such that Be ( a , δ ) ⊆ A .

Definition 2.6. ([9]) Let X be a linear 2-normed space . Then G ⊆ X is said
to be dense in X if V ∩ G 6= φ for every open set V in X .

Definition 2.7. ([10]) Let X be a linear 2-normed space and A ⊆ X . Then the
closure of A is denoted by A and defined as ,

{ x ∈ X | ∃ {xn } ∈ A with lim
n→∞

xn = x } .

The set A is said to be closed if A = A.

Theorem 2.8. (Baire’s theorem for 2-Banach spaces) ([1, 9]) Let X be a 2-Banach
space . Then the intersection of a countable number of dense open subsets of X is
dense in X .

Definition 2.9. ([1]) Let X and Y be two linear 2-normed spaces over the field
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K . Then a linear operator T : X → Y is said to be closed if for every {xn } in
X with xn → x and T (xn ) → y in Y we have x ∈ X and T (x ) = y .

Definition 2.10. ([9]) Let X and Y be two linear 2-normed spaces over R
and T : X → Y be a linear operator . The operator T is said to be sequentially
continuous at x ∈ X if and only if for every sequence {xn } in X that converges
to x, the sequence {T (xn ) } converges to T (x ) .

Definition 2.11. ([9]) Let X and Y be two linear 2-normed spaces over R . If
X is finite dimensional, then every linear operator T : X → Y is sequentially
continuous .

Definition 2.12. ([2]) Let (X , ‖ · , · ‖ ) be a linear 2-normed space over the
field K with b ∈ X be fixed and 〈 b 〉 is the subspace of X generated by b . Let
W be a subspace of X, then a mapping T : W × 〈 b 〉 → K is called a b-linear
functional on W × 〈 b 〉, if the following two hold:

(1) T ( x + y , b ) = T ( x , b ) + T ( y , b ) ∀ x , y ∈ W .

(2) T ( k x , b ) = k T ( x , b ) ∀ k ∈ K .

A b-linear functional T : W × 〈 b 〉 → K is said to be bounded if there exists a
real number M > 0 such that

|T ( x , b ) | ≤ M ‖ x , b ‖ ∀ x ∈ W .

Now we can define the norm of the b-linear functional T : W × 〈 b 〉 → K as

‖T ‖ = inf {M > 0 : |T (x , b ) | ≤ M ‖x , b ‖ ∀ x ∈ W } .

Then one can easily verified that,

‖T ‖ = sup{ |T (x , b ) | : ‖x , b ‖ ≤ 1 }

‖T ‖ = sup{ |T (x , b ) | : ‖x , b ‖ = 1 }

‖T ‖ = sup

{
|T (x , b ) |
‖x , b ‖

: ‖x , b ‖ 6= 0

}
and then

|T (x , b ) | ≤ ‖T ‖ ‖x , b ‖ ∀ x ∈ W .

Let X ∗b denote the Banach space of all bounded b-linear functionals defined on
X × 〈 b 〉 .
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3. Analogous Results in the classical normed spaces to 2-normed spaces

Theorem 3.1. Let (X , ‖ · , · ‖X ) and (Y , ‖ · , · ‖Y ) be two linear 2-normed
linear spaces over the field K , Then in the Cartesian product X × Y , we can
induce a 2-norm ‖ · , · ‖ using the 2-norms of X and Y . Furthermore, if X and
Y are 2-Banach spaces then X × Y is also 2-Banach space .
Proof. Define a function ‖ · , · ‖ : (X × Y ) × (X × Y ) → R by,

‖ (x 1 , y 1 ) , (x 2 , y 2 ) ‖ = ‖x 1 , x 2 ‖X + ‖ y 1 , y 2 ‖Y

for all (x 1 , y 1 ) , (x 2 , y 2 ) ∈ (X × Y ) . We now verify that this function is a
2-norm on X × Y .

( N 1 ) Suppose

‖ (x 1 , y 1 ) , (x 2 , y 2 ) ‖ = 0 ∀ (x 1 , y 1 ) , (x 2 , y 2 ) ∈ (X × Y )

⇔ ‖x 1 , x 2 ‖X + ‖ y 1 , y 2 ‖Y = 0

⇔ ‖x 1 , x 2 ‖X = 0 , ‖ y 1 , y 2 ‖Y = 0 for x1, x2 ∈ X& y 1, y2 ∈ Y

⇔ {x1, x 2 } and { y 1 , y 2 } are linearly dependent in X & Y
⇔ (x 1 , y 1 ) , (x 2 , y 2 ) are linearly dependent in X × Y .

( N 2 ) Now,

‖ (x 1 , y 1 ) , (x 2 , y 2 ) ‖ = ‖x 1 , x 2 ‖X + ‖ y 1 , y 2 ‖Y

= ‖x 2 , x 1 ‖X + ‖ y 2 , y 1 ‖Y
= ‖ (x 2 , y 2 ) , (x 1 , y 1 ) ‖

for all (x 1 , y 1 ) , (x 2 , y 2 ) ∈ (X × Y ) .

( N 3 ) Let α ∈ K, then

‖ α (x 1 , y 1 ) , (x 2 , y 2 ) ‖ = ‖ ( α x 1 , α y 1 ) , (x 2 , y 2 ) ‖

= ‖ α x 1 , x 2 ‖X + ‖ α y 1 , y 2 ‖Y
= | α | ‖ x 1 , x 2 ‖X + | α | ‖ y 1 , y 2 ‖Y
= | α | ( ‖x 1 , x 2 ‖X + ‖ y 1 , y 2 ‖Y )

= | α | ‖ (x 1 , y 1 ) , (x 2 , y 2 ) ‖
for every ( x 1 , y 1 ) , (x 2 , y 2 ) ∈ (X × Y ) .
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( N 4 )

‖ (x 1, y 1) + (x2, y2), (x3, y3)‖ = ‖ (x 1 + x 2 , y 1 + y 2 ) , (x 3 , y 3 ) ‖

= ‖x 1 + x 2 , x 3 ‖X + ‖ y 1 + y 2 , y 3 ‖Y
≤ ‖x 1 , x 3 ‖X + ‖x 2 , x 3 ‖X + ‖ y 1 , y 3 ‖Y + ‖ y 2 , y 3 ‖Y
= ‖x 1 , x 3 ‖X + ‖ y 1 , y 3 ‖Y + ‖x 2 , x 3 ‖X + ‖ y 2 , y 3 ‖Y
= ‖ (x 1 , y 1 ) , (x 3 , y 3 ) ‖ + ‖ (x 2 , y 2 ) , (x 3 , y 3 ) ‖

for every ( x 1 , y 1 ) , (x 2 , y 2 ) , (x 3 , y 3 ) ∈ (X × Y ) .

Thus, (X × Y , ‖ · , · ‖ ) becomes a linear 2-normed space .
Second part : Let { (xn , yn ) } be a Cauchy sequence in X × Y . Then

lim
n ,m→∞

‖ (xn , yn ) − (xm , ym ) , ( z , t ) ‖ = 0 ∀ ( z , t ) ∈ X × Y

⇒ lim
n ,m→∞

‖ (xn − xm , yn − ym ) , ( z , t ) ‖ = 0 ∀ ( z , t ) ∈ X × Y

⇒ lim
n ,m→∞

( ‖xn − xm , z ‖X + ‖ yn − ym , t ‖Y ) = 0 .

Therefore,
lim

n ,m→∞
‖xn − xm , z ‖X = 0 ∀ z ∈ X

and
lim

n ,m→∞
‖ yn − ym , t ‖Y = 0 ∀ t ∈ Y .

This shows that {xn } and { yn } are Cauchy sequences in X and Y , respec-
tively . Since X and Y are 2-Banach spaces, So there exists points x ∈ X
and y ∈ Y such that xn → x in X and yn → y in Y and hence
(xn , yn ) → (x , y ) in X × Y . Therefore, X × Y is 2-Banach space .

Theorem 3.2. Let X and Y be two linear 2-normed spaces over the field K and
D be a subspace of X. Then the linear operator T : D → Y is closed if and only if
its Graph is a closed subspace of X × Y .
Proof. First we suppose that T : D → Y is closed operator, that is the rela-
tion xn ∈ D , xn → x in X , T xn → y in Y implies that x ∈ D and
T x = y . We shall prove that the graph GT = { (x , T x ) : x ∈ D } is closed
in linear 2-normed space X × Y . Let { (xn , T xn ) } ⊆ GT , xn ∈ D and
(xn , T xn ) → (x , y ) as n → ∞ . Therefore,

lim
n→∞

‖ (xn , T xn ) − (x , y ) , ( z , t ) ‖ = 0 ∀ ( z , t) ∈ X × Y
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⇒ lim
n→∞

‖ (xn − x , T xn − y ) , ( z , t ) ‖ = 0 ∀ ( z , t) ∈ X × Y

⇒ lim
n→∞

(‖xn − x, z ‖X + ‖T xn − y , t ‖Y ) = 0 ∀(z, t) ∈ X × Y.

Thus,
lim
n→∞

‖xn − x , z ‖X = 0 ∀ z ∈ X

and
lim
n→∞

‖T xn − y , t ‖Y = 0 ∀ t ∈ Y .

This shows that xn → x and T xn → y as n → ∞ . Since T is closed operator,
We have x ∈ D and T x = y and therefore (x , y ) = ( x , T x ) ∈ GT . Hence,
GT is closed subspace of linear 2-normed space X × Y .
Conversely , Suppose GT is closed subspace of linear 2-normed space X × Y . To
prove T is closed operator, we consider xn → x , xn ∈ D and T xn → y . Now,

‖ (xn , T xn ) − (x , y ) , ( z , t ) ‖ = ‖ (xn − x , T xn − y ) , ( z , t ) ‖

= ‖xn − x , z ‖X + ‖T xn − y , t ‖Y . (1)

Since xn → x and T xn → y as n → ∞ , then

lim
n→∞

‖xn − x , z ‖X = 0 ∀ z ∈ X

and
lim
n→∞

‖T xn − y , t ‖Y = 0 ∀ t ∈ Y .

So by (1),

lim
n→∞

‖ (xn , T xn ) − (x , y ) , ( z , t ) ‖ = 0 ∀ ( z , t ) ∈ X × Y .

This shows that (xn , T xn ) → (x , y ) as n → ∞ . Since GT is closed subspace
of linear 2-normed space X × Y , it follows that (x , y ) ∈ GT , that is , x ∈ D
and y = T x . Hence, T is closed linear operator.

4. Some properties related to b-linear functional
In this section we define different types of continuity of b-linear functional and

give some characterizations between them in linear 2-normed spaces.

Theorem 4.1. Let X be a linear 2-normed space . Then

| ‖x , z ‖ − ‖ y , z ‖ | ≤ ‖x − y , z ‖ ∀ x , y , z ∈ X .
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Proof. Take x , y , z ∈ X . Then

‖x , z ‖ = ‖x − y + y , z ‖ ≤ ‖x − y , z ‖ + ‖ y , z ‖

⇒ ‖x , z ‖ − ‖ y , z ‖ ≤ ‖x − y , z ‖ .

Also, interchanging x and y , we get that

− ( ‖x , z ‖ − ‖ y , z ‖ ) ≤ ‖ y − x , z ‖ = ‖x − y , z ‖ .

Combining the above two inequality the result follows.

Theorem 4.2. Let T be a bounded b-linear functional on X × 〈 b 〉, where 〈 b 〉
is the subspace of the linear 2-normed space X generated by a fixed b ∈ X . Then

|T (x , b ) − T ( y , b ) | ≤ ‖T ‖ ‖x − y , b ‖ ∀ x , y ∈ X .

Proof. For each x, y ∈ X,

|T (x , b ) − T ( y , b ) | = |T (x , b ) + T (− y , b ) |

= |T (x− y , b ) |

≤ ‖T ‖ ‖ x− y , b ‖ .

Definition 4.3. Let T be a b-linear functional defined on X ×〈b〉. Then T is said
to be b-sequentially continuous at x ∈ X if for every sequence {xn} converging to
x in X, we have {T (xn, b)} converging to T (x, b) in K.

Theorem 4.4. Let X be a linear 2-normed space over K and b ∈ X be fixed. Then
every bounded b-linear functional defined on X × 〈b〉 is b-sequentially continuous.
Proof. Let T be a bounded b-linear functional on X × 〈 b 〉 and {xn } be a
sequence converging to x in X . Then,

lim
n→∞

‖xn − x , z ‖ = 0 ∀ z ∈ X ,

and for particular z = b, we can write, lim
n→∞

‖xn − x , b ‖ = 0 . Now, using

Theorem (4.2), by putting x = xn and y = x , we can write

|T (xn , b ) − T (x , b ) | ≤ ‖T ‖ ‖ xn − x , b ‖

⇒ lim
n→∞

|T (xn , b ) − T (x , b ) | ≤ ‖T ‖ lim
n→∞

‖xn − x , b ‖
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⇒ lim
n→∞

|T (xn , b ) − T (x , b ) | = 0 .

Therefore, {T (xn, b)} converging to T (x, b) in K. Hence, T is b-sequentially con-
tinuous.

Definition 4.5. Let X be a linear 2-normed space and b ∈ X be fixed. Then a
b-linear functional T : X × 〈b〉 → K is said to be continuous at x0 ∈ X if for any
open ball B (T (x0, b), ε) in K, there exist an open ball Be(x0, δ) in X such that

T (B e (x 0 , δ ) , b ) ⊆ B ( T (x 0 , b ) , ε ) .

Equivalently, for a given ε > 0, there exist some e ∈ X and δ > 0 such that

x ∈ X , ‖x − x 0 , e ‖ < δ ⇒ |T (x , b ) − T (x 0 , b ) | < ε .

Theorem 4.6. Let X be a linear 2-normed space and b ∈ X be fixed . If a b-
linear functional T on X × 〈 b 〉 is continuous at 0 then it is continuous on the
whole space X .
Proof. Let T : X × 〈 b 〉 → K be a b-linear functional which is continuous at 0
and x 0 ∈ X be arbitrary . Then for any open ball B ( 0 , ε ) in K, we can find
an open ball B e ( 0 , δ ) in X such that

T (B e ( 0 , δ ) , b ) ⊆ B (T ( 0 , b ) , ε ) = B ( 0 , ε ) [ ∵ T ( 0 , b ) = 0 ] .

Then,
T (x , b ) − T (x 0 , b ) = T (x − x 0 , b ) ∈ B ( 0 , ε ) ,

whenever x − x 0 ∈ B e ( 0 , δ ) . Thus , if x ∈ x 0 + B e ( 0 , δ ) = B e (x 0, δ), then

T (x , b ) ∈ T (x 0 , b ) + B ( 0 , ε ) = B (T (x 0 , b ) , ε ) .

Therefore,
T (B e (x 0 , δ ) , b ) ⊆ B (T (x 0 , b ) , ε ) .

Since x 0 is arbitrary element of X, So T is continuous on X .

Theorem 4.7. Let X be a linear 2-normed space . Then every continuous b-linear
functional defined on X × 〈 b 〉 is b-sequentially continuous .
Proof. Suppose that T : X × 〈 b 〉 → K is continuous at x ∈ X . Then for any
open ball B (T (x , b ) , ε ) in K, we can find an open ball B e (x , δ ) in X such
that

T (B e (x , δ ) , b ) ⊆ B (T (x , b ) , ε ) . (3)
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Let {xn } be any sequence in X such that xn → x as n → ∞ . Then, for the
open ball B e (x , δ ), there exist some K > 0 such that xn ∈ B e (x , δ ) ∀ n ≥
K . Now from (3), it follows that

T (xn , b ) ∈ B (T (x , b ) , ε ) ∀ n ≥ K

⇒ |T (xn , b ) − T (x , b ) | < ε ∀ n ≥ K .

Since B (T (x , b ) , ε ) is an arbitrary open ball in K, it follows that T (xn , b ) →
T (x , b ) as n → ∞ . This shows that T is b-sequentially continuous on X .

Theorem 4.8. Let X be a finite dimensional linear 2-normed space . Then every
b-linear functional defined on X × 〈 b 〉 is b-sequentially continuous .
Proof. Let X be a finite dimensional linear 2-normed space and T : X × 〈 b 〉 →
K be a b-linear functional . If X = { 0 } then the proof is obvious . Suppose that
X 6= { 0 } and let { e 1 , e 2 , · · · em } be a basis for X . We now show that T
is b-sequentially continuous . Let {xn } be a sequence in X with xn → x as
n → ∞ . Now, we can write ,

xn = an , 1 e 1 + an , 2 e 2 + · · · + an ,m em

and
x = a 1 e 1 + a 2 e 2 + · · · + am em

where an , j , a 1 , a 2 · · · am ∈ R . In Theorem (2.11), it has been shown that
an , j → a j as n → ∞ for all j . Then

T (xn , b ) = T ( an , 1 e 1 + an , 2 e 2 + · · · + an ,m em , b )

= an , 1 T ( e 1 , b ) + an , 2 T ( e 2 , b ) + · · · + an ,m T ( em , b )

→ a 1 T ( e 1 , b ) + a 2 T ( e 2 , b ) + · · ·+ am T ( em , b ) , as n → ∞

= T ( a 1 e 1 + a 2 e 2 + · · · + am em , b ) = T (x , b ) .

Thus, we have shown that if xn → x ⇒ T (xn , b ) → T (x , b ) . Therefore, T
is b-sequentially continuous .

5. Results in 2-Banach space analogous to Uniform Boundedness Prin-
ciple and Hahn-Banach Theorem

In this section we give the notion of Pointwise boundedness and Uniformly
boundedness of a bounded b-linear functional in linear 2-normed space. We de-
rive an analogue of Uniform Boundedness Principle and Hahn-Banach Extension
Theorem for bounded b-linear functional on 2-normed space. We define weak *
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convergence of sequence of bounded b-linear functionals in linear 2-normed spaces.

Definition 5.1. A subset A of a linear 2-normed space X is said to be nowhere
dense if its closure has empty interior. Thus, A is nowhere dense in X if corre-
sponding to any open ball Be(a, δ) in X with a ∈ A, there exists another open ball
Be(a

′
, δ

′
) such that Be(a

′
, δ

′
) ⊂ Be(a, δ) with A ∩Be(a

′
, δ

′
) = φ.

Definition 5.2. Let X be a linear 2-normed space. A set A of bounded b-linear
functionals defined on X × 〈b〉 is said to be:

(a) Pointwise bounded if for each x ∈ X, the set {T (x, b) : T ∈ A} is a bounded
set in K. That is

|T (x, b)| ≤ K ‖x, b‖ ∀ x ∈ X & ∀ T ∈ A .

(b) Uniformly bounded if there is a constant K > 0 such that ‖T‖ ≤ K ∀ T ∈ A.

Theorem 5.3. If a set A of bounded b-linear functionals on X × 〈b〉 is uniformly
bounded then it is pointwise bounded set.
Proof. Suppose A uniformly bounded . Then there is a constant K > 0 such
that ‖T ‖ ≤ K ∀ T ∈ A . Let x ∈ X be given . Then,

|T (x , b ) | ≤ ‖T ‖ ‖ x , b ‖ ≤ K ‖x , b ‖ ∀ T ∈ A

and hence A is pointwise bounded set in K .

Theorem 5.4. Let X be 2-Banach space over the field K and b ∈ X be fixed. If
a set A of bounded b-linear functionals on X × 〈b〉 is pointwise bounded, then it is
uniformly bounded.
Proof. For each positive integer n, we consider the set

Fn = {x ∈ X : |T (x , b ) | ≤ n ∀ T ∈ A } .

We now show that Fn is a closed subset of X . Let x ∈ Fn and {x k } be a
sequence in Fn such that x k → x as k → ∞ . Then

|T (x k , b ) | ≤ n ∀ T ∈ A .

Now, by the Theorem (4.4), T is b-sequentially continuous . So

lim
k →∞

|T (x k , b ) | = T (x , b ) .

This shows that |T (x , b ) | ≤ n ∀ T ∈ A ⇒ x ∈ Fn and hence Fn becomes
a closed subset of X for every n ∈ N . Since A is pointwise bounded, then the
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set {T (x , b ) : T ∈ A} is a bounded for each x ∈ X . Thus, we see that for
each x ∈ X is in some Fn and therefore

X =
∞⋃

n=1

Fn .

Since X is 2-Banach space, by Baire’s Category theorem for 2-Banach space,
∃ n 0 ∈ N such that Fn 0 is not nowhere dense in X i . e Fn 0 has nonempty inte-
rior . Consequently, ∃ a non-empty open ball B e (x 0 , δ ) such that B e (x 0 , δ ) ⊂
Fn 0 . i . e ,

|T (x , b ) | ≤ n 0 ∀ x ∈ B e (x 0 , δ ) and ∀ T ∈ A .

The above expression can be written in the form

|T (B e (x 0 , δ ) , b ) | ≤ n 0 ∀ T ∈ A .

Note that

x 0 + δ B e ( 0 , 1 ) = {x ∈ X : x = x 0 + δ a , a ∈ B e ( 0 , 1 ) }

= {x ∈ X : x = x 0 + δ a , ‖ a , e ‖ < 1 }

=

{
x ∈ X :

∥∥∥∥ x − x 0

δ
, e

∥∥∥∥ < 1

}
= {x ∈ X : ‖x − x 0 , e ‖ < δ } = B e (x 0 , δ )

⇒ B e ( 0 , 1 ) =
B e (x 0 , δ ) − x 0

δ
.

Clearly,
|T (x 0 , b ) | ≤ n 0 ∀ T ∈ A [ ∵ x 0 ∈ B e (x 0 , δ ) ] .

Therefore,

|T (B e ( 0 , 1 ) , b ) | =

∣∣∣∣T ( B e (x 0 , δ ) − x 0

δ
, b

) ∣∣∣∣
=

∣∣∣∣ 1

δ
T (B e (x 0 , δ ) − x 0 , b )

∣∣∣∣
≤ 1

δ
{ |T (B e (x 0 , δ ) , b ) | + |T (x 0 , b ) | }
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≤ 2n 0

δ
∀ T ∈ A

⇒ |T (x , b ) | ≤ 2n 0

δ
∀ x ∈ B e ( 0 , 1 ) and ∀ T ∈ A .

Thus,

‖T ‖ = sup { |T (x , b ) | : x ∈ B e ( 0 , 1 ) ∀ T ∈ A} ≤ 2n 0

δ
∀ T ∈ A .

This proves that A is uniformly bounded .

Theorem 5.5. Let X be a 2-Banach space and X∗b be the Banach space of all
bounded b-linear functionals defined on X × 〈b〉. If {Tn} ⊆ X∗b be a sequence such
that

lim
n→∞

Tn (x , b ) = T (x , b ) ∀ x ∈ X (4)

exists, then T ∈ X ∗b .
Proof. Note that (4) defines a mapping T : X × 〈 b 〉 → K which is, clearly, a
b-linear functional . We need only to show that T is bounded .
Since, for every x ∈ X, {Tn (x , b ) } convergent sequence in K, then it is
bounded in K . By the Theorem (5.4), the set { ‖Tn ‖ } is bounded . Then there
exists some constant M > 0 such that ‖Tn ‖ ≤ M ∀ n ∈ N . Therefore,

|Tn (x , b ) | ≤ ‖Tn ‖ ‖ x , b ‖ ≤ M ‖x , b ‖ ∀ x ∈ X & ∀ n ∈ N

⇒ lim
n→∞

|Tn (x , b ) | ≤ M ‖x , b ‖ ∀ x ∈ X

⇒ |T (x , b ) | ≤ M ‖x , b ‖ ∀ x ∈ X .

This shows that T is bounded b-linear functional defined on X × 〈 b 〉 and hence
T ∈ X ∗b .

Definition 5.6. A sequence {Tn} in X∗b , where X∗b is the Banach space of all
bounded b-linear functionals defined on X × 〈b〉 is said to be b-weak * convergent if
there exists an T ∈ X∗b such that

lim
n→∞

Tn (x , b ) = T (x , b ) ∀ x ∈ X .

The limits T is called the b-weak * limit of the sequence {Tn}.
Definition 5.7. A subset M of a linear 2-normed space X is said to be a funda-
mental or total set if the set SpanM is dense in X, that is SpanM = X.

Theorem 5.8. Let X be a 2-Banach space and {Tn} ⊆ X∗b be a sequence. Then
{Tn} is b-weak * Convergent if and only if the following two conditions hold:
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(a) The sequence {‖Tn‖} is bounded and

(b) The sequence {Tn(x, b)} is Cauchy sequence for each x ∈ W , where W is
fundamental or total subset of X.

Proof. Let {Tn } be b-weak * Convergent in X ∗b . Then

lim
n→∞

Tn (x , b ) = T (x , b ) ∀ x ∈ X .

This implies that {Tn (x , b ) } is bounded for each x ∈ X . Since X is 2-Banach
space then by Theorem (5.4), we get that { ‖Tn ‖ } is bounded and therefore ( a )
hold . Now from the definition of b-weak * Convergence, {Tn (x , b ) } is a conver-
gent sequence of numbers for x ∈ X , in particular, for x ∈ W . This proves ( b ) .
Conversely, suppose that the given two conditions hold . Since the sequence { ‖Tn ‖ }
is bounded, ∃ a constant K > 0 such that ‖Tn ‖ ≤ K ∀ n ∈ N . Also,
Span W = X, then for a given ε > 0 and for each x ∈ X , ∃ y ∈ Span W

such that ‖x − y , b ‖ <
ε

3K
. Now from the condition ( b ), it follows that

{Tn ( y , b ) } is Cauchy sequence for y ∈ Span W and hence there exists an inte-
ger N > 0 such that

|Tn ( y , b ) − Tm ( y , b )| < ε

3
∀ m , n ≥ N .

Now, for an arbitrary element x ∈ X, we have

|Tn (x , b ) − Tm (x , b ) |

= |Tn (x , b ) − Tn ( y , b ) + Tn ( y , b ) − Tm ( y , b ) + Tm ( y , b ) − Tm (x , b ) |

≤ |Tn (x , b ) − Tn ( y , b ) |+ |Tn ( y , b ) − Tm ( y , b ) |+ |Tm ( y , b ) − Tm (x , b ) |

< ‖Tn ‖ ‖ x − y , b ‖+ |Tn ( y , b ) − Tm ( y , b ) |+ ‖Tm ‖ ‖ x − y , b ‖

< K · ε

3K
+

ε

3
+ K · ε

3K
= ε ∀ m , n ≥ N .

Therefore,
|Tn (x , b ) − Tm (x , b ) | < ε ∀ m , n ≥ N .

This shows that {Tn (x , b ) } is Cauchy sequence in K . But K is complete, So
{Tn (x , b ) } is converges to T (x , b ) in K . Since x is an arbitrary element of
X, therefore it follows that

lim
n→∞

Tn (x , b ) = T (x , b ) ∀ x ∈ X .
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Thus, {Tn } is b-weak * Convergent sequence in X ∗b .

Definition 5.9. A linear 2-normed space X is said to be separable if X has a
countable dense subset.

Theorem 5.10. Let X be a linear 2-normed space over the field R and W be a
subspace of X. Then each bounded b-linear functional TW defined on W × 〈b〉 can
be extended onto X×〈b〉 with preservation of the norm. In other words, there exists
a bounded b-linear functional T defined on X × 〈b〉 such that

T (x , b ) = TW (x , b ) ∀ x ∈ W & ‖TW ‖ = ‖T ‖ .

Proof. We prove this theorem by assuming X is separable . This theorem also
hold for the spaces which are not separable . Let x 0 ∈ X −W and consider the set
W + x 0 = {x+ t x 0 : x ∈ W and t is arbitrary real number } . Clearly, W + x 0

is a subspace of X containing W . Let TW be a bounded b-linear functional de-
fined on W × 〈 b 〉 and further suppose that (x 1 , b ) , (x 2 , b ) ∈ W × 〈 b 〉 . Now,

TW (x 1 , b ) − TW (x 2 , b ) ≤ ‖TW ‖ ‖ x 1 − x 2 , b ‖

≤ ‖TW ‖ ( ‖x 1 + x 0 , b ‖ + ‖x 2 + x 0 , b ‖ )

⇒ TW (x 1 , b )− ‖TW ‖ ‖ x 1 + x 0 , b ‖ ≤ TW (x 2 , b ) + ‖TW ‖ ‖ x 2 + x 0 , b ‖ .
Since (x 1 , b ) , (x 2 , b ) be two arbitrary elements in W × 〈 b 〉, we obtain

sup
x ∈W

{TW (x , b ) − ‖TW ‖ ‖ x + x 0 , b ‖ }

≤ inf
x ∈W

{TW (x , b ) + ‖TW ‖ ‖ x + x 0 , b ‖ }

and hence we can find a real number α such that

sup
x ∈W

{TW (x , b ) − ‖TW ‖ ‖ x + x 0 , b ‖ } ≤ α

≤ inf
x ∈W

{TW (x , b ) + ‖TW ‖ ‖ x + x 0 , b ‖ } .
(5)

Now we define a b-linear functional T 0 on (W + x 0 ) × 〈 b 〉 by,

T 0 ( y , b ) = TW (x , b ) − t α ∀ ( y , b ) ∈ (W + x 0 ) × 〈 b 〉

where y = x+ t x 0 , t is a unique real number and α is the real number satisfying
(5) and x ∈ W . Clearly, TW ( y , b ) = T 0 ( y , b ) ∀ y ∈ W . We now show that
T 0 is bounded on (W + x 0 ) × 〈 b 〉 and ‖TW ‖ = ‖T 0 ‖ . For the boundedness
part of T 0 , we consider the following two cases
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(i) First we consider t > 0 . Since W is a subspace, we get
x

t
∈ W , whenever

x ∈ W and then the inequality (5) implies that,

T 0 ( y , b ) = t ·
{

1

t
TW (x , b ) − α

}
= t ·

{
TW

( x
t
, b
)
− α

}
≤ t · ‖TW ‖

∥∥∥ x
t

+ x 0 , b
∥∥∥

= ‖TW ‖ ‖ x + t x 0 , b ‖ = ‖TW ‖ ‖ y , b ‖ .

(ii) Next we consider t < 0 and again using the inequality (5)

TW

( x
t
, b
)
− α ≥ − ‖TW ‖

∥∥∥ x
t

+ x 0 , b
∥∥∥

= − 1

| t |
‖TW ‖ ‖ y , b ‖ =

1

t
‖TW ‖ ‖ y , b ‖ .

So,

T 0 ( y , b ) = t ·
{
TW

( x
t
, b
)
− α

}
≤ t · 1

t
‖TW‖ ‖y, b‖ = ‖TW‖ ‖y, b‖ .

Therefore,

T 0 ( y , b ) ≤ ‖TW ‖ ‖ y , b ‖ ∀ ( y , b ) ∈ (W + x 0 ) × 〈 b 〉 . (6)

Replacing − y for y in (6), we get

T 0 (− y , b ) ≤ ‖TW ‖ ‖ − y , b ‖ ⇒ −T 0 ( y , b ) ≤ ‖TW ‖ ‖ y , b ‖ .

Combining this with (6), we obtain

|T 0 ( y , b ) | ≤ ‖TW ‖ ‖ y , b ‖ ∀ ( y , b ) ∈ (W + x 0 ) × 〈 b 〉 .

This shows that T 0 is bounded and ‖T 0 ‖ ≤ ‖TW ‖ . Since the domain of TW

is a subset of the domain of T 0 , we get ‖T 0 ‖ ≥ ‖TW ‖ and hence ‖T 0 ‖ =
‖TW ‖ . Thus we have seen that T 0 (x , b ) is the extension of TW (x , b ) onto
(W + x 0 ) × 〈 b 〉 with ‖T 0 ‖ = ‖TW ‖ . Since X is separable, so there exists a
countable dense subset D of X . We select elements from this dense subset those
belong to X − W and arrange them as a sequence {x 0 , x 1 , x 2 · · · } . By the
previous procedure, we get the extension of TW (x , b ) onto (W + x 0 ) × 〈 b 〉 =
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W 1 × 〈 b 〉 , (W 1 + x 1 ) × 〈 b 〉 = W 2 × 〈 b 〉 , (W 2 + x 2 ) × 〈 b 〉 = W 3 × 〈 b 〉
and so on . Then we arrive at a bounded b-linear functional Tg : Wg × 〈 b 〉 → K ,
where Wg is everywhere dense in X and that contains Wn for n = 1 , 2 , 3 · · ·
and ‖Tg ‖ = ‖TW ‖ . If y ∈ X − Wg , then there exists a sequence { yn } in Wg

such that y = lim
n→∞

yn . We now define

T ( y , b ) = lim
n→∞

Tg ( yn , b ) .

If y ∈ Wg , we can put in particular y 1 = y 2 = · · · = y and so the b-linear
functional T ( y , b ) is an extension of Tg ( y , b ) onto X × 〈 b 〉 . Now

|T ( y , b ) | = lim
n→∞

|T g ( yn , b ) | ≤ ‖T g ‖ lim
n→∞

‖ yn , b ‖ = ‖TW ‖ ‖ y , b ‖ .

This shows that T (y, b) is bounded b-linear functional and ‖T‖ ≤ ‖TW‖. Since the
domain of TW is a subset of the domain of T , we get ‖T‖ ≥ ‖TW‖ and therefore
‖T‖ = ‖TW‖. Clearly T (x, b) = TW (x, b) for x ∈ W . This proves the theorem.

Theorem 5.11. Let X be a linear 2-normed space over the field R and let x0 be an
arbitrary non-zero element in X. Then there exists a bounded b-linear functional
T defined on X × 〈b〉 such that

‖T ‖ = 1 & T (x 0 , b ) = ‖x 0 , b ‖ .

Proof. Consider the set W = {tx0|where t is a arbitrary real number }. Then it
is easy to prove that W is a subspace of X. Define TW : W × 〈b〉 → R by,

TW (x , b ) = TW ( t x 0 , b ) = t ‖x 0 , b ‖ , t ∈ R .

Note that TW is a b-linear functional on W × 〈 b 〉 with the property that

TW (x 0 , b ) = ‖x 0 , b ‖ .

Further, for any x ∈ W , we have

|TW (x , b ) | = |TW ( t x 0 , b ) | = t ‖x 0 , b ‖ = ‖ t x 0 , b ‖ = ‖x , b ‖ .

So, TW is bounded b-linear functional and ‖TW ‖ = 1 . Now, according to the
Theorem (5.10) , there exists a bounded b-linear functional T defined on X × 〈 b 〉
such that T (x , b ) = TW (x , b ) ∀ x ∈ W and ‖T ‖ = ‖TW ‖ . Therefore,
T (x 0 , b ) = TW (x 0 , b ) = ‖x 0 , b ‖ and ‖T ‖ = 1 . This completes the proof.
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Theorem 5.12. Let X be a linear 2-normed space over the field R and let x ∈ X
and X∗b is the Banach space of all bounded b-linear functionals defined on X × 〈b〉.
Then

‖x , b ‖ = sup

{
|T (x , b ) |
‖T ‖

: T ∈ X ∗b , T 6= 0

}
.

Proof. If x = 0, there is nothing to prove. Let x 6= 0 be any element in X. By the
Theorem (5.11), there exists a T1 ∈ X∗b such that T1(x, b) = ‖x, b‖ and ‖T1‖ = 1.
Therefore,

sup

{
|T (x , b ) |
‖T ‖

: T ∈ X ∗b , T 6= 0

}
≥ |T 1 (x , b ) |

‖T 1 ‖
= ‖x , b ‖ . (7)

On the other hand, |T (x , b ) | ≤ ‖T ‖ ‖x , b ‖ ∀ T ∈ X ∗b and we obtain

sup

{
|T (x , b ) |
‖T ‖

: T ∈ X ∗b , T 6= 0

}
≤ ‖ x , b ‖ . (8)

From (7) and (8), we can write,

‖x , b ‖ = sup

{
|T (x , b ) |
‖T ‖

: T ∈ X ∗b , T 6= 0

}
.

This completes the proof.

6. Conclusion
Hahn-Banach theorem, Uniform boundedness principle, also known as Banach-

Steinhaus theorem, open mapping theorem, closed graph theorem are most fun-
damental theorems and determining tools in functional analysis. In this paper, in
the settings of linear 2-normed space, we have established necessary and sufficient
condition for a linear operator to be closed in terms of its graph, different types of
continuity for b-linear functionals and some characterizations of them and finally
uniform boundedness principle and Hahn-Banach extension theorem for bounded
b-linear functionals. Yet it remains to establish another few important concepts of
functional analysis like, reflexivity of linear 2-normed space, Hahn-Banach separa-
tion theorem for bounded b-linear functionals etc. in the settings of linear 2-normed
space. Also, these results can further be developed in linear n-normed space.
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